Redis 在当前的技术社区里是非常热门的。从来自 Antirez 一个小小的个人项目到成为内存数据存储行业的标准,Redis已经走过了很长的一段路。随之而来的一系列最佳实践,使得大多数人可以正确地使用 Redis。
下面我们将探索正确使用 Redis 的10个经验。
1、停止使用 KEYS *
Okay,以挑战这个命令开始这篇文章,或许并不是一个好的方式,但其确实可能是最重要的一点。很多时候当我们关注一个redis实例的统计数据,我们会快速地输入”KEYS *”命令,这样key的信息会很明显地展示出来。平心而论,从程序化的角度出发往往倾向于写出下面这样的伪代码:
for key in'keys *':
doAllTheThings()
但是当你有1300万个key时,执行速度将会变慢。因为KEYS命令的时间复杂度是O(n),其中n是要返回的keys的个数,这样这个命令的复杂度就取决于数据库的大小了。并且在这个操作执行期间,其它任何命令在你的实例中都无法执行。
作为一个替代命令,看一下 SCAN 吧,其允许你以一种更友好的方式来执行… SCAN 通过增量迭代的方式来扫描数据库。这一操作基于游标的迭代器来完成的,因此只要你觉得合适,你可以随时停止或继续。
2、找出拖慢 Redis 的罪魁祸首
由于 Redis 没有非常详细的日志,要想知道在 Redis 实例内部都做了些什么是非常困难的。幸运的是 Redis 提供了一个下面这样的命令统计工具:
127.0.0.1:6379> INFO commandstats
# Commandstats
cmdstat_get:calls=78,usec=608,usec_per_call=7.79
cmdstat_setex:calls=5,usec=71,usec_per_call=14.20
cmdstat_keys:calls=2,usec=42,usec_per_call=21.00
cmdstat_info:calls=10,usec=1931,usec_per_call=193.10
通过这个工具可以查看所有命令统计的快照,比如命令执行了多少次,执行命令所耗费的毫秒数(每个命令的总时间和平均时间)
只需要简单地执行 CONFIG RESETSTAT 命令就可以重置,这样你就可以得到一个全新的统计结果。
**3、 将 Redis-Benchmark 结果作为参考,而不要一概而论
**
Redis 之父 Salvatore 就说过:“通过执行GET/SET命令来测试Redis就像在雨天检测法拉利的雨刷清洁镜子的效果”。很多时候人们跑到我这里,他们想知道为什么自己的Redis-Benchmark统计的结果低于最优结果 。但我们必须要把各种不同的真实情况考虑进来,例如:
-
可能受到哪些客户端运行环境的限制? -
是同一个版本号吗? -
测试环境中的表现与应用将要运行的环境是否一致?
Redis-Benchmark的测试结果提供了一个保证你的 Redis-Server 不会运行在非正常状态下的基准点,但是你永远不要把它作为一个真实的“压力测试”。压力测试需要反应出应用的运行方式,并且需要一个尽可能的和生产相似的环境。
4、Hashes 是你的最佳选择
以一种优雅的方式引入 hashes 吧。hashes 将会带给你一种前所未有的体验。之前我曾看到过许多类似于下面这样的key结构:
foo:first_name
foo:last_name
foo:address
上面的例子中,foo 可能是一个用户的用户名,其中的每一项都是一个单独的 key。这就增加了 犯错的空间,和一些不必要的 key。使用 hash 代替吧,你会惊奇地发现竟然只需要一个 key :
127.0.0.1:6379> HSET foo first_name 'Joe'
(integer) 1
127.0.0.1:6379> HSET foo last_name 'Engel'
(integer) 1
127.0.0.1:6379> HSET foo address '1 Fanatical Pl'
(integer) 1
127.0.0.1:6379> HGETALL foo
1) 'first_name'
2) 'Joe'
3) 'last_name'
4) 'Engel'
5) 'address'
6) '1 Fanatical Pl'
127.0.0.1:6379> HGET foo first_name
'Joe'
**5、设置 key 值的存活时间
**
无论什么时候,只要有可能就利用key超时的优势。一个很好的例子就是储存一些诸如临时认证key之类的东西。当你去查找一个授权key时——以OAUTH为例——通常会得到一个超时时间。这样在设置key的时候,设成同样的超时时间,Redis就会自动为你清除!而不再需要使用KEYS *来遍历所有的key了,怎么样很方便吧?
**6、 选择合适的回收策略
**
既然谈到了清除key这个话题,那我们就来聊聊回收策略。当 Redis 的实例空间被填满了之后,将会尝试回收一部分key。根据你的使用方式,我强烈建议使用 volatile-lru 策略——前提是你对key已经设置了超时。但如果你运行的是一些类似于 cache 的东西,并且没有对 key 设置超时机制,可以考虑使用 allkeys-lru 回收机制。我的建议是先在这里查看一下可行的方案。
**7、如果你的数据很重要,请使用 Try/Except
**
如果必须确保关键性的数据可以被放入到 Redis 的实例中,我强烈建议将其放入 try/except 块中。几乎所有的Redis客户端采用的都是“发送即忘”策略,因此经常需要考虑一个 key 是否真正被放到 Redis 数据库中了。至于将 try/expect 放到 Redis 命令中的复杂性并不是本文要讲的,你只需要知道这样做可以确保重要的数据放到该放的地方就可以了。欢迎大家关注我的公种浩【程序员追风】,2019年多家公司java面试题整理了1000多道400多页pdf文档,文章都会在里面更新,整理的资料也会放在里面。
8、不要耗尽一个实例
无论什么时候,只要有可能就分散多redis实例的工作量。从3.0.0版本开始,Redis就支持集群了。Redis集群允许你基于key范围分离出部分包含主/从模式的key。完整的集群背后的“魔法”可以在这里找到。但如果你是在找教程,那这里是一个再适合不过的地方了。如果不能选择集群,考虑一下命名空间吧,然后将你的key分散到多个实例之中。关于怎样分配数据,在redis.io网站上有这篇精彩的评论。
9、内核越多越好吗?!
当然是错的。Redis 是一个单线程进程,即使启用了持久化最多也只会消耗两个内核。除非你计划在一台主机上运行多个实例——希望只会是在开发测试的环境下!——否则的话对于一个 Redis 实例是不需要2个以上内核的。
**10、高可用
**
到目前为止 Redis Sentinel 已经经过了很全面的测试,很多用户已经将其应用到了生产环境中(包括 ObjectRocket )。如果你的应用重度依赖于 Redis ,那就需要想出一个高可用方案来保证其不会掉线。当然,如果不想自己管理这些东西,ObjectRocket 提供了一个高可用平台,并提供7×24小时的技术支持,有意向的话可以考虑一下。
以上就是良许教程网为各位朋友分享的Linu系统相关内容。想要了解更多Linux相关知识记得关注公众号“良许Linux”,或扫描下方二维码进行关注,更多干货等着你 !