良许Linux教程网 干货合集 Linux 编程之经典多级时间轮定时器( C 语言版)

Linux 编程之经典多级时间轮定时器( C 语言版)

一. 多级时间轮实现框架

image-20230325135654451

上图是5个时间轮级联的效果图。中间的大轮是工作轮,只有在它上的任务才会被执行;其他轮上的任务时间到后迁移到下一级轮上,他们最终都会迁移到工作轮上而被调度执行。

多级时间轮的原理也容易理解:就拿时钟做说明,秒针转动一圈分针转动一格;分针转动一圈时针转动一格;同理时间轮也是如此:当低级轮转动一圈时,高一级轮转动一格,同时会将高一级轮上的任务重新分配到低级轮上。从而实现了多级轮级联的效果。

1.1 多级时间轮对象

image-20230325135645672
image-20230325135645672

多级时间轮应该至少包括以下内容:

  • 每一级时间轮对象
  • 轮子上指针的位置

关于轮子上指针的位置有一个比较巧妙的办法:那就是位运算。比如定义一个无符号整型的数:

image-20230325135633117
image-20230325135633117

通过获取当前的系统时间便可以通过位操作转换为时间轮上的时间,通过与实际时间轮上的时间作比较,从而确定时间轮要前进调度的时间,进而操作对应时间轮槽位对应的任务。

为什么至少需要这两个成员呢?

  • 定义多级时间轮,首先需要明确的便是级联的层数,也就是说需要确定有几个时间轮。
  • 轮子上指针位置,就是当前时间轮运行到的位置,它与真实时间的差便是后续时间轮需要调度执行,它们的差值是时间轮运作起来的驱动力。

多级时间轮对象的定义

//实现5级时间轮 范围为0~ (2^8 * 2^6 * 2^6 * 2^6 *2^6)=2^32
struct tvec_base
{
    unsigned long   current_index;   
    pthread_t     thincrejiffies;
    pthread_t     threadID;
    struct tvec_root  tv1; /*第一个轮*/
    struct tvec       tv2; /*第二个轮*/
    struct tvec       tv3; /*第三个轮*/
    struct tvec       tv4; /*第四个轮*/
    struct tvec       tv5; /*第五个轮*/
};

1.2 时间轮对象

image-20230325135627721
image-20230325135627721

我们知道每一个轮子实际上都是一个哈希表,上面我们只是实例化了五个轮子的对象,但是五个轮子具体包含什么,有几个槽位等等没有明确(即struct tvec和struct tvec_root)。

#define TVN_BITS   6
#define TVR_BITS   8
#define TVN_SIZE   (1
#define TVR_SIZE 
  (1
struct tvec {
    struct list_head vec[TVN_SIZE];/*64个格子*/
};
 
struct tvec_root{
    struct list_head vec[TVR_SIZE];/*256个格子*/
};

此外,每一个时间轮都是哈希表,因此它的类型应该至少包含两个指针域来实现双向链表的功能。这里我们为了方便使用通用的struct list_head的双向链表结构。

1.3 定时任务对象

image-20230325135623155
image-20230325135623155

定时器的主要工作是为了在未来的特定时间完成某项任务,而这个任务经常包含以下内容:

  • 任务的处理逻辑(回调函数)
  • 任务的参数
  • 双向链表节点
  • 到时时间

定时任务对象的定义

typedef void (*timeouthandle)(unsigned long );
 
struct timer_list{
    struct list_head entry;          //将时间连接成链表
    unsigned long expires;           //超时时间
    void (*function)(unsigned long); //超时后的处理函数
    unsigned long data;              //处理函数的参数
    struct tvec_base *base;          //指向时间轮
};

在时间轮上的效果图:

1.4 双向链表

在时间轮上我们采用双向链表的数据类型。采用双向链表的除了操作上比单链表复杂,多占一个指针域外没有其他不可接收的问题。而多占一个指针域在今天大内存的时代明显不是什么问题。至于双向链表操作的复杂性,我们可以通过使用通用的struct list结构来解决,因为双向链表有众多的标准操作函数,我们可以通过直接引用list.h头文件来使用他们提供的接口。

struct list可以说是一个万能的双向链表操作框架,我们只需要在自定义的结构中定义一个struct list对象即可使用它的标准操作接口。同时它还提供了一个类似container_of的接口,在应用层一般叫做list_entry,因此我们可以很方便的通过struct list成员找到自定义的结构体的起始地址。

关于应用层的log.h, 我将在下面的代码中附上该文件。如果需要内核层的实现,可以直接从linux源码中获取。

1.5 联结方式

多级时间轮效果图:

image-20230325135616092
image-20230325135616092

二. 多级时间轮C语言实现

2.1 双向链表头文件: list.h

提到双向链表,很多的源码工程中都会实现一系列的统一的双向链表操作函数。它们为双向链表封装了统计的接口,使用者只需要在自定义的结构中添加一个struct list_head结构,然后调用它们提供的接口,便可以完成双向链表的所有操作。

这些操作一般都在list.h的头文件中实现。Linux源码中也有实现(内核态的实现)。他们实现的方式基本完全一样,只是实现的接口数量和功能上稍有差别。可以说这个list.h文件是学习操作双向链表的不二选择,它几乎实现了所有的操作:增、删、改、查、遍历、替换、清空等等。这里我拼凑了一个源码中的log.h函数,终于凑够了多级时间轮中使用到的接口。

#if !defined(_BLKID_LIST_H) && !defined(LIST_HEAD)
#define _BLKID_LIST_H
#ifdef __cplusplus 

extern "C" {
#endif
/*
 * Simple doubly linked list implementation.
 *
 * Some of the internal functions ("__xxx") are useful when
 * manipulating whole lists rather than single entries, as
 * sometimes we already know the next/prev entries and we can
 * generate better code by using them directly rather than
 * using the generic single-entry routines.
 */
struct list_head {
 struct list_head *next, *prev;
};
#define LIST_HEAD_INIT(name) { &(name), &(name) }
#define LIST_HEAD(name) \
 struct list_head name = LIST_HEAD_INIT(name)
#define INIT_LIST_HEAD(ptr) do { \
 (ptr)->next = (ptr); (ptr)->prev = (ptr); \
} while (0)
static inline void
__list_add(struct list_head *entry,
                struct list_head *prev, struct list_head *next)
{
    next->prev = entry;
    entry->next = next;
    entry->prev = prev;
    prev->next = entry;
}
/**
 * Insert a new element after the given list head. The new element does not
 * need to be initialised as empty list.
 * The list changes from:
 *      head → some element → ...
 * to
 *      head → new element → older element → ...
 *
 * Example:
 * struct foo *newfoo = malloc(...);
 * list_add(&newfoo->entry, &bar->list_of_foos);
 *
 * @param entry The new element to prepend to the list.
 * @param head The existing list.
 */
static inline void
list_add(struct list_head *entry, struct list_head *head)
{
    __list_add(entry, head, head->next);
}
/**
 * Append a new element to the end of the list given with this list head.
 *
 * The list changes from:
 *      head → some element → ... → lastelement
 * to
 *      head → some element → ... → lastelement → new element
 *
 * Example:
 * struct foo *newfoo = malloc(...);
 * list_add_tail(&newfoo->entry, &bar->list_of_foos);
 *
 * @param entry The new element to prepend to the list.
 * @param head The existing list.
 */
static inline void
list_add_tail(struct list_head *entry, struct list_head *head)
{
    __list_add(entry, head->prev, head);
}
static inline void
__list_del(struct list_head *prev, struct list_head *next)
{
    next->prev = prev;
    prev->next = next;
}
/**
 * Remove the element from the list it is in. Using this function will reset
 * the pointers to/from this element so it is removed from the list. It does
 * NOT free the element itself or manipulate it otherwise.
 *
 * Using list_del on a pure list head (like in the example at the top of
 * this file) will NOT remove the first element from
 * the list but rather reset the list as empty list.
 *
 * Example:
 * list_del(&foo->entry);
 *
 * @param entry The element to remove.
 */
static inline void
list_del(struct list_head *entry)
{
    __list_del(entry->prev, entry->next);
}
static inline void
list_del_init(struct list_head *entry)
{
    __list_del(entry->prev, entry->next);
    INIT_LIST_HEAD(entry);
}
static inline void list_move_tail(struct list_head *list,
      struct list_head *head)
{
 __list_del(list->prev, list->next);
 list_add_tail(list, head);
}
/**
 * Check if the list is empty.
 *
 * Example:
 * list_empty(&bar->list_of_foos);
 *
 * @return True if the list contains one or more elements or False otherwise.
 */
static inline int
list_empty(struct list_head *head)
{
    return head->next == head;
}
/**
 * list_replace - replace old entry by new one
 * @old : the element to be replaced
 * @new : the new element to insert
 *
 * If @old was empty, it will be overwritten.
 */
static inline void list_replace(struct list_head *old,
    struct list_head *new)
{
 new->next = old->next;
 new->next->prev = new;
 new->prev = old->prev;
 new->prev->next = new;
}
/**
 * Retrieve the first list entry for the given list pointer.
 *
 * Example:
 * struct foo *first;
 * first = list_first_entry(&bar->list_of_foos, struct foo, list_of_foos);
 *
 * @param ptr The list head
 * @param type Data type of the list element to retrieve
 * @param member Member name of the struct list_head field in the list element.
 * @return A pointer to the first list element.
 */
#define list_first_entry(ptr, type, member) \
    list_entry((ptr)->next, type, member)
static inline void list_replace_init(struct list_head *old,
     struct list_head *new)
{
 list_replace(old, new);
 INIT_LIST_HEAD(old);
}
/**
 * list_entry - get the struct for this entry
 * @ptr: the &struct list_head pointer.
 * @type: the type of the struct this is embedded in.
 * @member: the name of the list_struct within the struct.
 */
#define list_entry(ptr, type, member) \
 ((type *)((char *)(ptr)-(unsigned long)(&((type *)0)->member)))
/**
 * list_for_each - iterate over elements in a list
 * @pos: the &struct list_head to use as a loop counter.
 * @head: the head for your list.
 */
#define list_for_each(pos, head) \
 for (pos = (head)->next; pos != (head); pos = pos->next)
/**
 * list_for_each_safe - iterate over elements in a list, but don't dereference
 *                      pos after the body is done (in case it is freed)
 * @pos: the &struct list_head to use as a loop counter.
 * @pnext: the &struct list_head to use as a pointer to the next item.
 * @head: the head for your list (not included in iteration).
 */
#define list_for_each_safe(pos, pnext, head) \
 for (pos = (head)->next, pnext = pos->next; pos != (head); \
      pos = pnext, pnext = pos->next)
#ifdef __cplusplus
}
#endif
#endif /* _BLKID_LIST_H */

这里面一般会用到一个重要实现:container_of, 它的原理这里不叙述

2.2 调试信息头文件: log.h

这个头文件实际上不是必须的,我只是用它来添加调试信息(代码中的errlog(), log()都是log.h中的宏函数)。它的效果是给打印的信息加上颜色,效果如下:

image-20230325135609691
image-20230325135609691

log.h的代码如下:

#ifndef _LOG_h_
#define _LOG_h_
#include 
#define COL(x)  "\033[;" #x "m"
#define RED  
   COL(31)
#define GREEN   COL(32)
#define YELLOW  COL(33)
#define BLUE    COL(34)
#define
 MAGENTA COL(35)
#define CYAN    COL(36)
#define WHITE   COL(0)
#define GRAY  
  "\033[0m"
#define errlog(fmt, arg...) do{     \

    printf(RED"

[#ERROR: Toeny Sun:"GRAY YELLOW" %s:%d]:"GRAY WHITE fmt GRAY, __func__, __LINE__, ##arg);\

}while(0)
#define log(fmt, arg...) do{     \

    printf(WHITE"
[#DEBUG: Toeny Sun: "GRAY YELLOW"%s:%d]:"GRAY WHITE fmt GRAY, __func__, __LINE__, ##arg);\

}while(0)
#endif

2.3 时间轮代码: timewheel.c

/*
 *毫秒定时器  采用多级时间轮方式  借鉴linux内核中的实现
 *支持的范围为1 ~  2^32 毫秒(大约有49天)
 *若设置的定时器超过最大值 则按最大值设置定时器
 **/
#include 
#include 
#include 
#include 
#include
 
#include 
#include "list.h"
#include "log.h" 
#define TVN_BITS 
  6
#define TVR_BITS   8
#define TVN_SIZE   (1
#define TVR_SIZE   (1
  
#define TVN_MASK   (TVN_SIZE - 1)
#define TVR_MASK   (TVR_SIZE - 1) 

 
#define SEC_VALUE   0
#define USEC_VALUE   2000

 
struct tvec_base;
#define INDEX(N) ((ba->current_index >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)

 
typedef void (*timeouthandle)(unsigned long );
 
 
struct timer_list{

    struct list_head entry;          //将时间连接成链表
    unsigned long expires;           //超时时间
    void (*function)(unsigned long); //超时后的处理函数
    unsigned long data;              //处理函数的参数
    struct tvec_base *base;          //指向时间轮
};
 
struct tvec {
    struct list_head vec[TVN_SIZE];
};
 
struct tvec_root{
    struct list_head vec[TVR_SIZE];
};
 
//实现5级时间轮 范围为0~ (2^8 * 2^6 * 2^6 * 2^6 *2^6)=2^32
struct tvec_base
{
    unsigned long   current_index;   
    pthread_t     thincrejiffies;
    pthread_t     threadID;
    struct tvec_root  tv1; /*第一个轮*/
    struct tvec       tv2; /*第二个轮*/
    struct tvec       tv3; /*第三个轮*/
    struct tvec       tv4; /*第四个轮*/
    struct tvec       tv5; /*第五个轮*/
};
 
static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
{
    struct list_head *vec;
    unsigned long expires = timer->expires; 
    unsigned long idx = expires - base->current_index;
#if 1 
    if( (signed long)idx tv1.vec + (base->current_index & TVR_MASK);/*放到第一个轮的当前槽*/
    }
 else if ( idx tv1.vec + i;
    }
    else if( idx > TVR_BITS) & TVN_MASK;
        vec = base->tv2.vec + i;
    }
    else if( idx > (TVR_BITS + TVN_BITS)) & TVN_MASK;
        vec = base->tv3.vec + i;
    }
    else if( idx > (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
        vec = base->tv4.vec + i;
    }
    else            /*第五个轮*/
    {
        int i;
        if (idx > 0xffffffffUL) 
        {
            idx = 0xffffffffUL;
            expires = idx + base->current_index;
        }
        i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
        vec = base->tv5.vec + i;
    }
#else
 /*上面可以优化吧*/;
#endif 
    list_add_tail(&timer->entry, vec);
}
 
static inline void detach_timer(struct timer_list *timer)
{
    struct list_head *entry = &timer->entry;
    __list_del(entry->prev, entry->next);
    entry->next = NULL;
    entry->prev = NULL;
}
 
static int __mod_timer(struct timer_list *timer, unsigned long expires)
{        
    if(NULL != timer->entry.next)
        detach_timer(timer);
 
    internal_add_timer(timer->base, timer); 
 
    return 0;
}
 
//修改定时器的超时时间外部接口
int mod_timer(void *ptimer, unsigned long expires)
{
    struct timer_list *timer  = (struct timer_list *)ptimer;
    struct tvec_base *base;
  
 base = timer->base;
    if(NULL == base)
        return -1;
    
    expires = expires + base->current_index;  
    if(timer->entry.next != NULL  && timer->expires == expires)
        return 0;
 
    if( NULL == timer->function )
    {
        errlog("timer's timeout function is null\n");
        return -1;
    }
 
 timer->expires = expires;
    return __mod_timer(timer,expires);
}
 
//添加一个定时器
static void __ti_add_timer(struct timer_list *timer)
{
    if( NULL != timer->entry.next )
    {
        errlog("timer is already exist\n");
        return;
    }
 
    mod_timer(timer, timer->expires);            
}
 
/*添加一个定时器  外部接口
 *返回定时器
 */
void* ti_add_timer(void *ptimewheel, unsigned long expires,timeouthandle phandle,
 unsigned long arg)
{
    struct timer_list  *ptimer;
 
    ptimer = (struct timer_list *)malloc( sizeof(struct timer_list) );
    if(NULL == ptimer)
        return NULL;
 
    bzero( ptimer,sizeof(struct timer_list) );        
    ptimer->entry.next = NULL;
    ptimer->base = (struct tvec_base *)ptimewheel; 
    ptimer->expires = expires;
    ptimer->function  = phandle;
    ptimer->data = arg;
 
    __ti_add_timer(ptimer);
 
    return ptimer;
}
 
/*
 *删除一个定时器  外部接口
 *
 * */
void ti_del_timer(void *p)
{
    struct timer_list *ptimer =(struct timer_list*)p;
 
    if(NULL == ptimer)
        return;
 
    if(NULL != ptimer->entry.next)
        detach_timer(ptimer);
    
    free(ptimer);
}
/*时间轮级联*/ 
static int cascade(struct tvec_base *base, struct tvec *tv, int index)
{
    struct list_head *pos,*tmp;
    struct timer_list *timer;
    struct list_head tv_list;
    
 /*将tv[index]槽位上的所有任务转移给tv_list,然后清空tv[index]*/
    list_replace_init(tv->vec + index, &tv_list);/*用tv_list替换tv->vec + index*/
 
    list_for_each_safe(pos, tmp, &tv_list)/*遍历tv_list双向链表,将任务重新添加到时间轮*/
    {
        timer = list_entry(pos,struct timer_list,entry);/*struct timer_list中成员entry的地址

是pos, 获取struct timer_list的首地址*/
        internal_add_timer(base, timer);
    }
 
    return index;
}
 
static void *deal_function_timeout(void *base)
{
    struct timer_list *timer;
    int ret;
    struct timeval tv;
    struct tvec_base *ba = (struct tvec_base *)base;
    
    for(;;)
    {
        gettimeofday(&tv, NULL);  
        while( ba->current_index current_index & TVR_MASK;/*获取第一个轮上的指针位置*/
           struct list_head *head = &work_list;

     /*指针指向0槽时,级联轮需要更新任务列表*/
           if(!index && (!cascade(ba, &ba->tv2, INDEX(0))) &&( !cascade(ba, &ba-

>tv3, INDEX(1))) && (!cascade(ba, &ba->tv4, INDEX(2))) )
               cascade(ba, &ba->tv5, INDEX(3));
           
            ba->current_index ++;
            list_replace_init(ba->tv1.vec + index, &work_list);
            while(!list_empty(head))
            {
                void (*fn)(unsigned long);
                unsigned long data;
                timer = list_first_entry(head, struct timer_list, entry);
                fn = timer->function;
                data = timer->data;
                detach_timer(timer);
                (*fn)(data);  
            }
        }
    }
}
 
static void init_tvr_list(struct tvec_root * tvr)
{
    int i;
 
    for( i = 0; ivec[i]);
}
 
 
static void init_tvn_list(struct tvec * tvn)
{
    int i;
 
    for( i = 0; ivec[i]);
}
 
//创建时间轮  外部接口
void *ti_timewheel_create(void )
{
    struct tvec_base *base;
    int ret = 0;
    struct timeval tv;
 
    base = (struct tvec_base *) malloc( sizeof(struct tvec_base) );
    if( NULL==base )
        return NULL;
    
    bzero( base,sizeof(struct tvec_base) );
        
    init_tvr_list(&base->tv1);
    init_tvn_list(&base->tv2);
    init_tvn_list(&base->tv3);
    init_tvn_list(&base->tv4);
    init_tvn_list(&base->tv5);
    
    gettimeofday(&tv, NULL);
    base->current_index = tv.tv_sec*1000 + tv.tv_usec/1000;/*当前时间毫秒数*/
 
    if( 0 != pthread_create(&base->threadID,NULL,deal_function_timeout,base) )
    {
        free(base);
        return NULL;
    }    
    return base;
}
 
static void ti_release_tvr(struct tvec_root *pvr)
{
    int i;
    struct list_head *pos,*tmp;
    struct timer_list *pen;
 
    for(i = 0; i vec[i])
        {
            pen = list_entry(pos,struct timer_list, entry);
            list_del(pos);
            free(pen);
        }
    }
}
 
static void ti_release_tvn(struct tvec *pvn)
{
    int i;
    struct list_head *pos,*tmp;
    struct timer_list *pen;
 
    for(i = 0; i vec[i])
        {
            pen = list_entry(pos,struct timer_list, entry);
            list_del(pos);
            free(pen);
        }
    }
}
 
 
/*
 *释放时间轮 外部接口
 * */
void ti_timewheel_release(void * pwheel)
{  
    struct tvec_base *base = (struct tvec_base *)pwheel;
    
    if(NULL == base)
        return;
 
    ti_release_tvr(&base->tv1);
    ti_release_tvn(&base->tv2);
    ti_release_tvn(&base->tv3);
    ti_release_tvn(&base->tv4);
    ti_release_tvn(&base->tv5);
 
    free(pwheel);
}
 
/************demo****************/
struct request_para{
    void *timer;
    int val;
};
 
void mytimer(unsigned long arg)
{
    struct request_para *para = (struct request_para *)arg;
 
    log("%d\n",para->val);
    mod_timer(para->timer,3000);  //进行再次启动定时器
 
 sleep(10);/*定时器依然被阻塞*/
 
    //定时器资源的释放是在这里完成的
    //ti_del_timer(para->timer);
}
 
int main(int argc,char *argv[])
{
    void *pwheel = NULL;
    void *timer  = NULL;
    struct request_para *para;
   
  
    para = (struct request_para *)malloc( sizeof(struct request_para) );
    if(NULL == para)
        return 0;
    bzero(para,sizeof(struct request_para));
 
    //创建一个时间轮
    pwheel = ti_timewheel_create();
    if(NULL == pwheel)
        return -1;
   
    //添加一个定时器
    para->val = 100;
    para->timer = ti_add_timer(pwheel, 3000, &mytimer, (unsigned long)para);
    
    while(1)
    {
        sleep(2);
    }
 
    //释放时间轮
    ti_timewheel_release(pwheel);
    
    return 0;
}

2.4 编译运行

peng@ubuntu:/mnt/hgfs/timer/4. timerwheel/2. 多级时间轮$ ls
a.out  list.h  log.h  mutiTimeWheel.c
toney@ubantu:/mnt/hgfs/timer录/4. timerwheel/2. 多级时间轮$ gcc mutiTimeWheel.c -lpthread
toney@ubantu:/mnt/hgfs/timer/4. timerwheel/2. 多级时间轮$ ./a.out 
[#DEBUG: Toeny Sun: mytimer:370]:100
[#DEBUG: Toeny Sun: mytimer:370]:100
[#DEBUG: Toeny Sun: mytimer:370]:100
[#DEBUG: Toeny Sun: mytimer:370]:100
[#DEBUG: Toeny Sun: mytimer:370]:100
[#DEBUG: Toeny Sun: mytimer:370]:100
[#DEBUG: Toeny Sun: mytimer:370]:100
[#DEBUG: Toeny Sun: mytimer:370]:100
[#DEBUG: Toeny Sun: mytimer:370]:100
[#DEBUG: Toeny Sun: mytimer:370]:100
[#DEBUG: Toeny Sun: mytimer:370]:100
[#DEBUG: Toeny Sun: mytimer:370]:100
[#DEBUG: Toeny Sun: mytimer:370]:100
[#DEBUG: Toeny Sun: mytimer:370]:100
[#DEBUG: Toeny Sun: mytimer:370]:100
[#DEBUG: Toeny Sun: mytimer:370]:100
[#DEBUG: Toeny Sun: mytimer:370]:100
[#DEBUG: Toeny Sun: mytimer:370]:100
[#DEBUG: Toeny Sun: mytimer:370]:100
[#DEBUG: Toeny Sun: mytimer:370]:100
[#DEBUG: Toeny Sun: mytimer:370]:100
[#DEBUG: Toeny Sun: mytimer:370]:100
[#DEBUG: Toeny Sun: mytimer:370]:100
[#DEBUG: Toeny Sun: mytimer:370]:100
[#DEBUG: Toeny Sun: mytimer:370]:100
[#DEBUG: Toeny Sun: mytimer:370]:100
[#DEBUG: Toeny Sun: mytimer:370]:100
[#DEBUG: Toeny Sun: mytimer:370]:100

从结果可以看出:如果添加的定时任务是比较耗时的操作,那么后续的任务也会被阻塞,可能一直到超时,甚至一直阻塞下去,这个取决于当前任务是否耗时。

这个理论上是绝不能接受的:一个任务不应该也不能去影响其他的任务吧。但是目前没有对此问题进行改进和完善,以后有机会再继续完善吧。

以上就是良许教程网为各位朋友分享的Linu系统相关内容。想要了解更多Linux相关知识记得关注公众号“良许Linux”,或扫描下方二维码进行关注,更多干货等着你 !

137e00002230ad9f26e78-265x300
本文由 良许Linux教程网 发布,可自由转载、引用,但需署名作者且注明文章出处。如转载至微信公众号,请在文末添加作者公众号二维码。
良许

作者: 良许

良许,世界500强企业Linux开发工程师,公众号【良许Linux】的作者,全网拥有超30W粉丝。个人标签:创业者,CSDN学院讲师,副业达人,流量玩家,摄影爱好者。
上一篇
下一篇

发表评论

联系我们

联系我们

公众号:良许Linux

在线咨询: QQ交谈

邮箱: yychuyu@163.com

关注微信
微信扫一扫关注我们

微信扫一扫关注我们

关注微博
返回顶部