许多人对单片机、Cortex-M和Linux与嵌入式系统之间的区别感到困惑。接下来,我将就Cortex-M、ARM和Linux等进行详细解释。
对于这个问题,首先我们可以从GPT所给出的答案入手:
ARM和Cortex-M
ARM处理器的体系结构定义了指令集(ISA)和基于这一体系结构下处理器的模型。ARM的指令集从ARMv1发展到今天的ARMv9,每一次体系结构的修改都会添加实用技术。
在ARMv6之前,其内核指令集架构都是单一款式,但在ARMv7开始,其指令集架构变成3种款式,即目前大家熟知的Cotex-M、 Cotex-R、 Cotex-A,或者ARMv7-A、ARMv7-R、 ARMv7-M这三款。
-
Cotex-M:主要指微处理器; -
Cotex-R:主要指实时性处理器; -
Cotex-A:主要指应用型处理器;
更多介绍可以参看文章:STM32、Cortex-M3和ARMv8-M之间的关联。
值得注意的是,Cortex-M下的处理器没有内存管理单元MMU。
内存管理单元MMU
MMU:Memory Management Unit,内存管理单元。
内存管理单元主要负责从虚拟地址到物理地址的映射,并在硬件层对内存访问权限的检查。
在Linux等多用户、多进程的操作系统中,MMU使得各个用户进程都有独立的地址空间,以防止内存越界。
图2 MMU的地位
MCU都有一个地址集和,被称为虚拟地址范围。以Cortex-M 32为机为例,虚拟地址范围为0 ~ 0xFFFFFFFF (4G地址空间)。
当该控制器寻址一个256M的内存时,它的可用地址范围被限定为0 ~ 0x0FFFFFFF(256M)。
1.在没有内存管理的处理器中,虚拟地址被直接发送到内存总线上,以读写该地址下的物理存储器。
**
**
2.在有内存管理的控制器中,虚拟地址首先被发送到MMU中,被映射为物理地址后再发送到内存总线上。
图3 内存管理机制
注:上图仅简单反映内存管理的映射机制,其他暂不做讨论。
MMU虚拟内存管理最主要的作用是让每个进程有独立的地址空间。
不同进程中的同一个虚拟地址被MMU映射到不同的物理地址,并且在某一个进程中访问任何地址都不可能访问到另外一个进程的数据,这样使得任何一个进程由于执行错误指令或恶意代码导致的非法内存访问都不会意外改写其它进程的数据,不会影响其它进程的运行,从而保证整个系统的稳定性。
另一方面,每个进程都认为自己独占整个虚拟地址空间,这样链接器和加载器的实现会比较容易,不必考虑各进程的地址范围是否冲突。
Liunx操作系统
操作系统通常分为实时操作系统和非实时操作系统。
1.实时操作系统大多为单进程、多线程(多任务),因此不涉及到线程间的地址空间分配,不需要使用MMU,例如ucos、 FreeRTOS、 RT-Thread等。
2.Linux系统属于非实时性操作体统,多进程是其主要特点,可以参考文章:Linux是实时系统还是分时操作系统?
以Ubuntu为例,打开一个shell并且查看bash进程的地址范围如图4,它的地址范围为0x0000000000400000~0xffffffffff600000。
图4 shell 1中的bash地址
我们打开另一个shell,查看该shell中bash进程的地址范围,如图5。不难发现,两个不同bash进程的地址范围完全相同。其实操作系统或者用户在fork()进程时完全不需要考虑物理内存的地址分配,该工作由微控制器的内存管理单元MMU来做。
图5 shell 2中的bash地址
既然是多进程依赖了内存管理单元,那么在使用嵌入式Linux时只开一个进程可以吗?肯定是不可行的!开机后即使用户什么都不做,可见的系统运行必须的进程已经运行了几十至上百个,如图6。
图6 进程树
总结
通过上述描述我们可以知道,Linux操作系统对MMU(内存管理单元)有极强的依赖,若在没有内存管理单元的CPU中运行Linux,恐怕整个系统只能停留在Uboot阶段了。
由于ARM的Cortex-M处理器没有内存管理单元,,一般来说不建议跑Linux操作系统。
当然,任何事情都不是绝对的,如果你重写了Linux内核且搭配足够大的内存芯片,从理论上来说是可以省掉MMU的。
但是,这样的工作量,真的值得吗?实际上,MMU就是为了解决操作系统越来越复杂的内存管理而产生的。
以上就是良许教程网为各位朋友分享的Linu系统相关内容。想要了解更多Linux相关知识记得关注公众号“良许Linux”,或扫描下方二维码进行关注,更多干货等着你 !