良许Linux教程网 干货合集 MOS管损坏的多种原因

MOS管损坏的多种原因

MOS管在电路板中非常常见,今天我来分享一下关于MOS管损坏的多种原因。

关于MOS管

MOS管是一种电压驱动型器件,只需要在栅极和源极之间施加适当的电压,就可以形成源极和漏极之间的电流通路。

这个电流通路的阻抗被称为MOS内阻,也就是导通电阻。这个内阻的大小基本上决定了MOS芯片能够承受的最大导通电流(当然还与其他因素有关,最主要的是热阻)。内阻越小,MOS芯片能够承受的电流就越大(因为发热较小)。

MOS管在控制器电路中具有以下几种工作状态:

  1. 开通过程:从截止到导通的过渡过程。
  2. 导通状态:源极和漏极之间有电流通过。
  3. 关断过程:从导通到截止的过渡过程。
  4. 截止状态:源极和漏极之间没有电流通过。

MOS损坏主要原因:

  • 过流:持续大电流或瞬间超大电流引起的结温过高而烧毁;
  • 过压:源漏过压击穿、源栅极过压击穿;
  • 静电:静电击穿,CMOS电路都怕静电;
image-20230809223904735
image-20230809223904735

第一种:雪崩破坏

如果在漏极-源极间外加超出器件额定VDSS的电涌电压,而且达到击穿电压V(BR)DSS (根据击穿电流其值不同),并超出一定的能量后就发生破坏的现象。

在介质负载的开关运行断开时产生的回扫电压,或者由漏磁电感产生的尖峰电压超出功率MOSFET的漏极额定耐压并进入击穿区而导致破坏的模式会引起雪崩破坏。

典型电路:

image-20230809223911064
image-20230809223911064

第二种:器件发热损坏

由超出安全区域引起发热而导致的。发热的原因分为直流功率和瞬态功率两种。

直流功率原因:外加直流功率而导致的损耗引起的发热

  • 导通电阻RDS(on)损耗(高温时RDS(on)增大,导致一定电流下,功耗增加)

  • 由漏电流IDSS引起的损耗(和其他损耗相比极小)

  • 瞬态功率原因:外加单触发脉冲

  • 负载短路

  • 开关损耗(接通、断开) *(与温度和工作频率是相关的)

  • 内置二极管的trr损耗(上下桥臂短路损耗)(与温度和工作频率是相关的)

器件正常运行时不发生的负载短路等引起的过电流,造成瞬时局部发热而导致破坏。另外,由于热量不相配或开关频率太高使芯片不能正常散热时,持续的发热使温度超出沟道温度导致热击穿的破坏。

图片
图片

第三种:内置二极管破坏

在DS端间构成的寄生二极管运行时,由于在Flyback时功率MOSFET的寄生双极晶体管运行,

导致此二极管破坏的模式。

image-20230809223925789
image-20230809223925789

第四种:由寄生振荡导致的破坏

此破坏方式在并联时尤其容易发生。

在并联功率MOS FET时未插入栅极电阻而直接连接时发生的栅极寄生振荡。高速反复接通、断开漏极-源极电压时,在由栅极-漏极电容Cgd(Crss)和栅极引脚电感Lg形成的谐振电路上发生此寄生振荡。当谐振条件(ωL=1/ωC)成立时,在栅极-源极间外加远远大于驱动电压Vgs(in)的振动电压。

由于超出栅极-源极间额定电压导致栅极破坏,或者接通、断开漏极-源极间电压时的振动电压通过栅极-漏极电容Cgd和Vgs波形重叠导致正向反馈,因此可能会由于误动作引起振荡破坏。

image-20230809223933653
image-20230809223933653

第五种:栅极电涌、静电破坏

主要有因在栅极和源极之间如果存在电压浪涌和静电而引起的破坏,即栅极过电压破坏和由上电状态中静电在GS两端(包括安装和和测定设备的带电)而导致的栅极破坏。

image-20230809223949167
image-20230809223949167

总结

避免MOS因为器件发热而造成的损坏,需要做好足够的散热设计。若通过增加散热器和电路板的长度来供所有MOS管散热,这样就会增加机箱的体积,同时这种散热结构,风量发散,散热效果不好。

有些大功率逆变器MOS管会安装通风纸来散热,但安装很麻烦。所以MOS管对散热的要求很高,散热条件分为最低和最高,即在运行中的散热情况的上下浮动范围。一般在选购的时候通常采用最差的散热条件为标准,这样在使用的时候就可以留出最大的安全余量,即使在高温中也能确保系统的正常运行。

以上就是良许教程网为各位朋友分享的Linu系统相关内容。想要了解更多Linux相关知识记得关注公众号“良许Linux”,或扫描下方二维码进行关注,更多干货等着你 !

137e00002230ad9f26e78-265x300
本文由 良许Linux教程网 发布,可自由转载、引用,但需署名作者且注明文章出处。如转载至微信公众号,请在文末添加作者公众号二维码。
良许

作者: 良许

良许,世界500强企业Linux开发工程师,公众号【良许Linux】的作者,全网拥有超30W粉丝。个人标签:创业者,CSDN学院讲师,副业达人,流量玩家,摄影爱好者。
上一篇
下一篇

发表评论

联系我们

联系我们

公众号:良许Linux

在线咨询: QQ交谈

邮箱: yychuyu@163.com

关注微信
微信扫一扫关注我们

微信扫一扫关注我们

关注微博
返回顶部