良许Linux教程网 干货合集 分享几点单片机面向对象思想的案例

分享几点单片机面向对象思想的案例

在查看别人的单片机程序时,也许你会感到沮丧。因为全局变量随处可见,你不知道哪个变量在哪里使用,又代表着什么含义,而且编写方式非常不规范。当你自己编写单片机程序时,你可能也会感到困惑。你总觉得重新启动一个项目,之前写过类似代码的部分也无法复用,必须重新编写,代码的重用率很低,编程效率也很低,代码无法积累。而且,你会感到编写这些代码缺乏思想、灵感和框架,只是一个个功能代码的堆砌,缺乏实质性的内容。

在这种情况下,你可能应该考虑在单片机中引入面向对象的思想,以使代码更加规范。

以下是一个单片机程序框架的示例:

一、单片机程序框架

1、轮流执行

int main (void)
{
 while(1)
 {
  sing();
  dance();
  play();
 }
}

如果函数 sing 执行时间较长,那么 dance 函数就无法被快速执行。如果任何一个函数发生故障,都会影响整个系统的运行。

2、前后台

在使用 51、AVR、STM32 等单片机时,通常会在 main 函数中使用 while(1) 创建一个大循环来完成所有处理,即应用程序是一个无限循环,在循环中调用相应的函数完成所需的处理。有时候我们还需要通过中断来完成一些处理。相对于多任务系统而言,这就是单任务系统,也被称为前后台系统,其中中断服务函数作为前台程序,而大循环 while(1) 则作为后台程序。

image-20231116214407852
image-20231116214407852

对应的编程代码大概是这样的:

void EXTI_IRQHandler()
{
    flag = 1;
}
int main (void)
{
    while(1)
    {
        if (flag = 1)
        {
            do_something();
            flag = 0;
        }
    }
}

有什么问题?

前后台系统的实时性差,前后台系统各个任务(应用程序)都是排队等着轮流执行,不管你这个程序现在有多紧急,没轮到你就只能等着!相当于所有任务(应用程序)的优先级都是一样的。但是前后台系统简单啊,资源消耗也少啊!在稍微大一点的嵌入式应用中前后台系统就明显力不从心了。

3、多任务

void first_task()
{
    while (1)
    {
        if(has_data())
            put_data();
    }
}
void second_task()
{
    while (1)
    {
        if(get_data())
            do_something();
    }
}

int main(void)
{
    create_task(first_task);
    create_task(second_task);
    start_scheduler();
}

多任务系统会把一个大问题“分而治之”,把大任务划分成很多个小问题,逐步的把小任务解决掉,大任务也就随之解决了,这些任务是并发处理的。注意,并不是说同一时刻一起执行很多个任务,而是由于每个任务执行的时间很短,导致看起来像是同一时刻执行了很多个任务一样。

二、执行的程序怎么写?

以按键为例,点亮一个小灯!

image-20231116214511459
image-20231116214511459

1.常规写法

int mian(void)
{
    while (1)
    {
        if(HAL_GPIO_ReadPin(GPIOA, GPIO_PIN_3) == GPIO_PIN_SET)
        {
            printf("按键按下\r\n");
        }
    }
}

2.面向对象的写法

首先我们把每一个按键都看成一个对象,既然是对象就肯定有属性和行为,比如我们定义一个学生,那么这个学生有什么属性呢?

肯定有姓名、年龄、身高、体重对吧,这些是一些基本的属性,我们可以用一些单独的变量来定义它,比如:

typedef struct
{
 uint8_t  *name; //姓名(变量)
 uint8_t  age;   //年龄(变量)
  uint8_t  height;//身高(变量)
  uint8_t  weight;//体重(变量)
} student_t;

但是一个学生还有很多行为对吧,它会唱歌、跳舞、打篮球、也会关注果果小师弟的公众号对吧,于是我们就可以这样定义:

typedef struct
{
 uint8_t  *name;  //姓名(变量)
 uint8_t  age;    //年龄(变量)
  uint8_t  height; //身高(变量)
  uint8_t  weight; //体重(变量)
 void (*Sing_song)(void); //会唱歌(函数指针)
 void (*Dance_latin)(void); //会跳舞(函数指针)
  void (*Wechat_zhiguoxin)(void); //会关注果果的公众号(函数指针)
} student_t;

好了,这里我们提到了函数指针,所以就来说一说函数指针。

函数指针,顾名思义它就是一个指针,只不过它是一个函数指针,所以指向的是一个函数。类比一般的变量指针,指针变量,实质上是一个变量,只不过这个变量存放的是一个地址,在32位单片机中,任何类型的指针变量都存放的是一个大小为4字节的地址。

重要的话说三遍!牢记在心!!!为什要记住函数指针,因为在单片机面向对象编程中,结构体的成员不是变量就是函数指针这两种类型。变量就不用说了,函数指针理解就好。

其实函数指针可以类比一般的变量,看下面:

int   a;  void Sing_song(void);
int * p;  void (*zhiguoxin)(void);
p=&a;    zhiguoxin = &Sing_song;
  1. 左边走义变量a,右边定义函数Sing_song;
  2. 左边定义int指针,右边定义函数指针;
  3. 左边赋值指针,右边赋值函数指针;

那么函数指针怎么用呢?我们还是以单片机为例,把按键类比为一个对象,这个按键有按键标志位,有长按或者短按,按键还有行为:按键初始化、按键循环检测等。

所以我们创建下面这样一个结构体,当然这个结构体不一定仅仅有这些变量和函数,这完全取决于你自己的定义,你想怎么定义就怎么定义,你甚至可以定义按键的颜色都。

typedef struct
{
 uint8_t  KEY_Flag;  //标志位(变量)
 uint8_t  Click;//按下(变量)
 void (*KEY_Init)(void); //按键初始化(函数指针)
 void (*KEY_Detect)(void); //按键检测(函数指针)
} KEY_t;

现在已经定义了KEY_t这种类型的结构体,处理器还没有分配给这个结构体内存,因为我们只是声明这样一个类型,而类型是不占用内存的,只有我们定义对应的结构体类型的变量时才会在占用内存空间

那么怎么定义一个结构体类型的变量呢?

KEY_t   KEY1;

然后就要初始化结构体的成员变量了。

KEY_t  KEY1 = {0,0,KEY_init,KEY_detect};  

这里要注意了现在结构体有四个成员,前两个普通的变量,我们初始化为0,还有两个函数指针,我们是不是要把我们想写得函数的函数名字放在这里啊。

那么聪明的你肯定知道还要定义KEY_init();KEY_detect();这两个函数。这两个函数可以这样写。

static void KEY_init()
{
  GPIO_InitTypeDef GPIO_InitStruct;
  GPIO_InitStruct.Pin = GPIO_PIN_3;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
}
static void KEY_detect() 
{
 uint8_t i = 0; 
 if(KEY1.KEY_Flag == 1)
 {
  HAL_Delay(100);
  if(HAL_GPIO_ReadPin(GPIOA,GPIO_PIN_3) == GPIO_PIN_SET)
  {
    printf("按键按下\r\n");
  }
  KEY1.KEY_Flag = 0;
 }
}

好了具体函数中的代码我就不需要解释了。这样一个按键的对象我们就定义好了,**这个按键我们赋予了”他”生命,有属性(变量)有行为(函数)**。

这样我们在主函数就可以这样的调用,来实现相应的功能了。按键使用了中断,这里并没有讲解。

void main(void)
{
  KEY1.KEY_Init();//初始化按键
  while(1) 
   {  
  KEY1.KEY_Detect();//按键检测
 }
}

如果理解了这些,那么面向对象的精髓你基本已经掌握了,接下来就是不断地去练习和实践了。

三、为什么要面向对象?

我们知道,现有的编程范式主要是:面向过程编程、面向对象编程、函数式编程。

对于流程清晰的简单程序,一般只有一条流程主线,很容易被划分成顺序执行的几个步骤,面向对象编程和面向过程编程没有太大差别,并且面向过程编程常常比面向对象编程更加直观高效。

但当我们面对一个大型的复杂程序,由于其错综复杂的流程和交互关系,很难将其简单地拆分成一条主线串成的简单步骤,而通常表现为一个网状关系结构。这个时候,面向过程编程的这种流程化和线性化的思维方式就会显得比较吃力,而面向对象编程的优势就比较明显了。

面向对象编程风格的代码更容易复用、扩展和维护、更高级、更人性化、更适合大规模复杂程序的开发。在Linux中就是用的面向对象编程,里面有很多的结构体、指针、链表等等。如果还没有接触到面向对象编程只能说明你做的东西还不够复杂。

在单片机举一个例子,一块开发板可能会适配不同的屏幕:

image-20231116214516910
image-20231116214516910

一块板子,三个屏幕

那么每一块板子肯定有不同的代码适配,在程序中我们可以读出屏幕的ID,然后通过if判断来执行不同的指令,就行这样。

image-20231116214524699
image-20231116214524699

果果小师弟

如果使用面向对象编程,那么就可以这样写代码。

typedef struct lcd{
 uint8_t type;
 void (*LCD_Init)(void)
}lcd_t, *plcd_t;

int Read_id()
{
 /* 0: LCDA
  * 1: LCDB
  */
 return 0; 
}

int Get_Lcd_Type(void)
{
 return Read_id();
}

void LCDA_Init(void)//屏幕A初始化
{
    LCD_WR_REG(0xCF);  
    LCD_WR_DATA(0x00); 
    LCD_WR_DATA(0xC1); 
    LCD_WR_DATA(0X30); 
}

void LCDB_Init(void)//屏幕B初始化
{
    LCD_WR_REG(0X11);
    delay_ms(20);
    LCD_WR_REG(0XD0);
    LCD_WR_DATA(0X07); 
}

lcd_t openedv_com_lcds[] = {
 {0, LCDA_Init},
 {1, LCDB_Init},
};

plcd_t get_lcd(void)//获取到屏幕类型
{
 int type = Get_Lcd_Type();
 return &openedv_com_lcds[type];
}

int main(void )
{
 plcd_t lcd; 
 lcd = get_lcd();//获取到屏幕类型
 lcd-> LCD_Init();//初始化对应屏幕
 while (1)
  {} 
}

这里只是伪代码处理办法,原理就和上面所讲的一样,在结构体中使用变量和函数。

到这里你应该掌握了面向对象得单片机编程方法,一起来试验几个例子:

LED灯

typedef struct
{ 
 void (*LED_ON)(uint8_t LED_Num);     //打开
 void (*LED_OFF)(uint8_t LED_Num);    //关闭
 void (*LED_Flip)(uint8_t LED_Num);   //翻转
} LED_t;

按键KEY

typedef struct
{
 uint8_t  KEY_Flag;        //标志位(变量)
 uint8_t  Click;           //按下(变量)
 void (*KEY_Init)(void);   //按键初始化(函数指针)
 void (*KEY_Detect)(void); //按键检测(函数指针)
} KEY_t;

蜂鸣器BEEP

typedef struct
{
 uint8_t Status;      //状态
 void (*ON)(void);     //打开
 void (*OFF)(void);    //关闭
} BEEP_t;

串口UART

typedef struct
{
 USART_TypeDef *uart;/* STM32内部串口设备指针 */
 uint8_t *pTxBuf;   /* 发送缓冲区 */
 uint8_t *pRxBuf;   /* 接收缓冲区 */
 
 uint16_t usTxBufSize;  /* 发送缓冲区大小 */
 uint16_t usRxBufSize;  /* 接收缓冲区大小 */
 
  uint16_t usTxWrite; /* 发送缓冲区写指针 */
  uint16_t usTxRead;  /* 发送缓冲区读指针 */
  uint16_t usTxCount; /* 等待发送的数据个数 */

  uint16_t usRxWrite; /* 接收缓冲区写指针 */
  uint16_t usRxRead;  /* 接收缓冲区读指针 */
  uint16_t usRxCount; /* 还未读取的新数据个数 */
  
  void (*RS485_Set_SendMode)(void);  //RS-485接口设置为发送模式
  void (*RS485_Set_RecMode)(void);   //RS-485接口设置为接收模式
}UART_T;
image-20231116214530878
image-20231116214530878

以上就是良许教程网为各位朋友分享的Linu系统相关内容。想要了解更多Linux相关知识记得关注公众号“良许Linux”,或扫描下方二维码进行关注,更多干货等着你 !

137e00002230ad9f26e78-265x300
本文由 良许Linux教程网 发布,可自由转载、引用,但需署名作者且注明文章出处。如转载至微信公众号,请在文末添加作者公众号二维码。
良许

作者: 良许

良许,世界500强企业Linux开发工程师,公众号【良许Linux】的作者,全网拥有超30W粉丝。个人标签:创业者,CSDN学院讲师,副业达人,流量玩家,摄影爱好者。
上一篇
下一篇

发表评论

联系我们

联系我们

公众号:良许Linux

在线咨询: QQ交谈

邮箱: yychuyu@163.com

关注微信
微信扫一扫关注我们

微信扫一扫关注我们

关注微博
返回顶部