良许Linux教程网 干货合集 ELF相比Hex、Bin文件格式有哪些与众不同?

ELF相比Hex、Bin文件格式有哪些与众不同?

关于计算机文件的类别繁多,今天我将分享一种被用于二进制文件、可执行文件、目标代码、共享库和核心转储格式文件的文件格式。

一、ELF文件简介

ELF(Executable and Linkable Format)是可执行和可链接格式的缩写。

首先,我们需要了解的是,对象文件(Object files)分为三种类型:

1)可重定向文件:这些文件保存代码和相应的数据,用于与其他目标文件一起创建可执行文件或共享目标文件。(也称为目标文件或静态库文件,通常具有.a或.o的后缀)

2)可执行文件:这些文件保存用于执行的程序。(例如bash、gcc等)

3)共享目标文件:这些文件是共享库。它们保存代码和适当的数据,用于由链接器和动态链接器进行链接。

二、ELF文件格式

ELF文件格式提供了链接视图和执行视图两种视角。

image-20231205200457358
image-20231205200457358

链接视图是以节(section)为单位,执行视图是以段(segment)为单位。链接视图就是在链接时用到的视图,而执行视图则是在执行时用到的视图。上图左侧的视角是从链接来看的,右侧的视角是执行来看的。总个文件可以分为四个部分:

  • ELF header:描述整个文件的组织。
  • Program Header Table: 描述文件中的各种segments,用来告诉系统如何创建进程映像的。
  • sections 或者 segments:segments是从运行的角度来描述elf文件,sections是从链接的角度来描述elf文件,也就是说,在链接阶段,我们可以忽略program header table来处理此文件,在运行阶段可以忽略section header table来处理此程序(所以很多加固手段删除了section header table)。从图中我们也可以看出,segments与sections是包含的关系,一个segment包含若干个section。
  • Section Header Table: 包含了文件各个segction的属性信息,我们都将结合例子来解释。
image-20231205200500332
image-20231205200500332

程序头部表(Program Header Table),如果存在的话,告诉系统如何创建进程映像。

节区头部表(Section Header Table)包含了描述文件节区的信息,比如大小、偏移等。

如下图,可以通过执行命令”readelf -S android_server”来查看该可执行文件中有哪些section。

image-20231205200504255
image-20231205200504255

通过执行命令readelf –segments android_server,可以查看该文件的执行视图。

image-20231205200507512
image-20231205200507512

这验证了第一张图中所述,segment是section的一个集合,sections按照一定规则映射到segment。那么为什么需要区分两种不同视图?

当ELF文件被加载到内存中后,系统会将多个具有相同权限(flg值)section合并一个segment。操作系统往往以页为基本单位来管理内存分配,一般页的大小为4096B,即4KB的大小。同时,内存的权限管理的粒度也是以页为单位,页内的内存是具有同样的权限等属性,并且操作系统对内存的管理往往追求高效和高利用率这样的目标。ELF文件在被映射时,是以系统的页长度为单位的,那么每个section在映射时的长度都是系统页长度的整数倍,如果section的长度不是其整数倍,则导致多余部分也将占用一个页。而我们从上面的例子中知道,一个ELF文件具有很多的section,那么会导致内存浪费严重。这样可以减少页面内部的碎片,节省了空间,显著提高内存利用率。

需要注意地是:尽管图中显示的各个组成部分是有顺序的,实际上除了 ELF 头部表以外,其他节区和段都没有规定的顺序。

三、ELF Header

首先,我们先来看下32位ELF文件中常用的数据格式:

名称 大小 对齐 目的
Elf32_Addr 4 4 无符号程序地址
Elf32_Half 2 2 无符号中等整数
Elf32_Off 4 4 无符号文件偏移
Elf32_SWord 4 4 有符号大整数
Elf32_Word 4 4 无符号大整数
unsigned char 1 1 无符号小整数

然后我们来观察一下ELF Header的结构体:

#define EI_NIDENT 16
typedef struct {
       unsigned char e_ident[EI_NIDENT];
       ELF32_Half e_type;
       ELF32_Half e_machine;
       ELF32_Word e_version;
       ELF32__Addr e_entry;
       ELF32_Off e_phoff;
       ELF32_Off e_shoff;
       ELF32_Word e_flags;
       ELF32_Half e_ehsize;
       ELF32_Half e_phentsize;
       ELF32_Half e_phnum;
       ELF32_Half e_shentsize;
       ELF32_Half e_shnum;
       ELF32_Half e_shstrndx;
}Elf32_Ehdr;

e_ident :ELF的一些标识信息,前四位为.ELF,其他的信息比如大小端等
e_machine :文件的目标体系架构,比如ARM
e_version : 0为非法版本,1为当前版本
e_entry :程序入口的虚拟地址
e_phoff :程序头部表偏移地址
e_shoff :节区头部表偏移地址
e_flags :保存与文件相关的,特定于处理器的标志
e_ehsize :ELF头的大小
e_phentsize :每个程序头部表的大小
e_phnum :程序头部表的数量
e_shentsize:每个节区头部表的大小
e_shnum :节区头部表的数量
e_shstrndx:节区字符串表位置

接着运行readelf -h android_server命令,可以看到ELF Header结构的内容。

image-20231205200512107
image-20231205200512107

或者使用010Editor的ELF模板也可以看到ELF Header结构。对比以下三类ELF文件,我们得到了以下结论:

1、e_type标识了文件类型

2、Relocatable File(.o文件)不需要执行,因此e_entry字段为0,且没有Program Header Table等执行视图

3、不同类型的ELF文件的Section也有较大区别,比如只有Relocatable File有.strtab节。

image-20231205200515840
image-20231205200515840

Shared Object File(.so文件)

image-20231205200518899
image-20231205200518899

Executable File(可执行文件android_server)

image-20231205200521938
image-20231205200521938

Relocatable File(.o文件)

四、Section Header Table

一个ELF文件中到底有哪些具体的 sections,由包含在这个ELF文件中的 section head table(SHT)决定。在SHT中,针对每一个section,都设置有一个条目(entry),用来描述对应的这个section,其内容主要包括该 section 的名称、类型、大小以及在整个ELF文件中的字节偏移位置等等。我们也可以在TISCv1.2规范中找到SHT表中条目的C结构定义:

typedef struct{
    Elf32_Word sh_name;   //节区名,是节区头部字符串表节区(Section Header String Table Section)的索引。名字是一个 NULL 结尾的字符串。
    Elf32_Word sh_type;    //为节区类型
    Elf32_Word sh_flags;    //节区标志
    Elf32_Addr sh_addr;    //如果节区将出现在进程的内存映像中,此成员给出节区的第一个字节应处的位置。否则,此字段为 0。
    Elf32_Off sh_offset;    //此成员的取值给出节区的第一个字节与文件头之间的偏移。
    Elf32_Word sh_size;   //此 成 员 给 出 节 区 的 长 度 ( 字 节 数 )。
    Elf32_Word sh_link;   //此成员给出节区头部表索引链接。其具体的解释依赖于节区类型。
    Elf32_Word sh_info;       //此成员给出附加信息,其解释依赖于节区类型。
    Elf32_Word sh_addralign;    //某些节区带有地址对齐约束.
    Elf32_Word sh_entsize;    //某些节区中包含固定大小的项目,如符号表。对于这类节区,此成员给出每个表项的长度字节数。
}Elf32_Shdr;

sh_type的取值如下:

名称 取值 说明
SHT_NULL 0 此值标志节区头部是非活动的,没有对应的节区。此节区头部中的其他成员取值无意义。
SHT_PROGBITS 1 此节区包含程序定义的信息,其格式和含义都由程序来解释。
SHT_SYMTAB 2 此节区包含一个符号表。目前目标文件对每种类型的节区都只能包含一个,不过这个限制将来可能发生变化。一般,SHT_SYMTAB 节区提供用于链接编辑(指 ld 而言)的符号,尽管也可用来实现动态链接。
SHT_STRTAB 3 此节区包含字符串表。目标文件可能包含多个字符串表节区。
SHT_RELA 4 此节区包含重定位表项,其中可能会有补齐内容(addend),例如 32 位目标文件中的 Elf32_Rela 类型。目标文件可能拥有多个重定位节区。
SHT_HASH 5 此节区包含符号哈希表。所有参与动态链接的目标都必须包含一个符号哈希表。目前,一个目标文件只能包含一个哈希表,不过此限制将来可能会解除。
SHT_DYNAMIC 6 此节区包含动态链接的信息。目前一个目标文件中只能包含一个动态节区,将来可能会取消这一限制。
SHT_NOTE 7 此节区包含以某种方式来标记文件的信息。
SHT_NOBITS 8 这 种 类 型 的 节 区 不 占 用 文 件 中 的 空 间 , 其 他 方 面 和SHT_PROGBITS 相似。尽管此节区不包含任何字节,成员sh_offset 中还是会包含概念性的文件偏移
SHT_REL 9 此节区包含重定位表项,其中没有补齐(addends),例如 32 位目标文件中的 Elf32_rel 类型。目标文件中可以拥有多个重定位节区。
SHT_SHLIB 10 此节区被保留,不过其语义是未规定的。包含此类型节区的程序与 ABI 不兼容。
SHT_DYNSYM 11 作为一个完整的符号表,它可能包含很多对动态链接而言不必要的符号。因此,目标文件也可以包含一个 SHT_DYNSYM 节区,其中保存动态链接符号的一个最小集合,以节省空间。
SHT_LOPROC 0X70000000 这一段(包括两个边界),是保留给处理器专用语义的。
SHT_HIPROC OX7FFFFFFF 这一段(包括两个边界),是保留给处理器专用语义的。
SHT_LOUSER 0X80000000 此值给出保留给应用程序的索引下界。
SHT_HIUSER 0X8FFFFFFF 此值给出保留给应用程序的索引上界。

五、Section

有些节区是系统预订的,一般以点开头号,因此,我们有必要了解一些常用到的系统节区。

名称 类型 属性 含义
.bss SHT_NOBITS SHF_ALLOC + SHF_WRITE 包含将出现在程序的内存映像中的为初始化数据。根据定义,当程序开始执行,系统将把这些数据初始化为 0。此节区不占用文件空间。
.comment SHT_PROGBITS (无) 包含版本控制信息。
.data SHT_PROGBITS SHF_ALLOC + SHF_WRITE 这些节区包含初始化了的数据,将出现在程序的内存映像中。
.data1 SHT_PROGBITS SHF_ALLOC + SHF_WRITE 这些节区包含初始化了的数据,将出现在程序的内存映像中。
.debug SHT_PROGBITS (无) 此节区包含用于符号调试的信息。
.dynamic SHT_DYNAMIC 此节区包含动态链接信息。节区的属性将包含 SHF_ALLOC 位。是否 SHF_WRITE 位被设置取决于处理器。
.dynstr SHT_STRTAB SHF_ALLOC 此节区包含用于动态链接的字符串,大多数情况下这些字符串代表了与符号表项相关的名称。
.dynsym SHT_DYNSYM SHF_ALLOC 此节区包含了动态链接符号表。
.fini SHT_PROGBITS SHF_ALLOC + SHF_EXECINSTR 此节区包含了可执行的指令,是进程终止代码的一部分。程序正常退出时,系统将安排执行这里的代码。
.got SHT_PROGBITS 此节区包含全局偏移表。
.hash SHT_HASH SHF_ALLOC 此节区包含了一个符号哈希表。
.init SHT_PROGBITS SHF_ALLOC + SHF_EXECINSTR 此节区包含了可执行指令,是进程初始化代码的一部分。当程序开始执行时,系统要在开始调用主程序入口之前(通常指 C 语言的 main 函数)执行这些代码。
.interp SHT_PROGBITS 此节区包含程序解释器的路径名。如果程序包含一个可加载的段,段中包含此节区,那么节区的属性将包含 SHF_ALLOC 位,否则该位为 0。
.line SHT_PROGBITS (无) 此节区包含符号调试的行号信息,其中描述了源程序与机器指令之间的对应关系。其内容是未定义的。
.note SHT_NOTE (无) 此节区中包含注释信息,有独立的格式。
.plt SHT_PROGBITS 此节区包含过程链接表(procedure linkage table)。
.relname .relaname SHT_REL SHT_RELA 这些节区中包含了重定位信息。如果文件中包含可加载的段,段中有重定位内容,节区的属性将包含 SHF_ALLOC 位,否则该位置 0。传统上 name 根据重定位所适用的节区给定。例如 .text 节区的重定位节区名字将是:.rel.text 或者 .rela.text。
.rodata .rodata1 SHT_PROGBITS SHF_ALLOC 这些节区包含只读数据,这些数据通常参与进程映像的不可写段。
.shstrtab SHT_STRTAB 此节区包含节区名称。
.strtab SHT_STRTAB 此节区包含字符串,通常是代表与符号表项相关的名称。如果文件拥有一个可加载的段,段中包含符号串表,节区的属性将包含SHF_ALLOC 位,否则该位为 0。
.symtab SHT_SYMTAB 此节区包含一个符号表。如果文件中包含一个可加载的段,并且该段中包含符号表,那么节区的属性中包含SHF_ALLOC 位,否则该位置为 0。
.text SHT_PROGBITS SHF_ALLOC + SHF_EXECINSTR 此节区包含程序的可执行指令。

六、Program Header Table

程序头部(Program Header)描述与程序执行直接相关的目标文件结构信息。用来在文件中定位各个段的映像。同时包含其他一些用来为程序创建映像所必须的信息。
可执行文件或者共享目标文件的程序头部是一个结构数组,每个结构描述了一个段或者系统准备程序执行所必须的其他信息。目标文件的“段”包含一个或者多个“节区”,也就是“段内容(Segment Contents)”。程序头部仅对可执行文件和共享目标文件有意义。

程序头部的数据结构如下:

typedef struct {  
    Elf32_Word p_type;           //此数组元素描述的段的类型,或者如何解释此数组元素的信息。 
    Elf32_Off  p_offset;           //此成员给出从文件头到该段第一个字节的偏移
    Elf32_Addr p_vaddr;         //此成员给出段的第一个字节将被放到内存中的虚拟地址
    Elf32_Addr p_paddr;        //此成员仅用于与物理地址相关的系统中。System V忽略所有应用程序的物理地址信息。
    Elf32_Word p_filesz;         //此成员给出段在文件映像中所占的字节数。可以为0。
    Elf32_Word p_memsz;     //此成员给出段在内存映像中占用的字节数。可以为0。
    Elf32_Word p_flags;         //此成员给出与段相关的标志。
    Elf32_Word p_align;        //此成员给出段在文件中和内存中如何对齐。
} Elf32_phdr;

p_type:

名称 取值 说明
PT_NULL 0 此数组元素未用。结构中其他成员都是未定义的。
PT_LOAD 1 此数组元素给出一个可加载的段,段的大小由 p_filesz 和 p_memsz描述。文件中的字节被映射到内存段开始处。如果 p_memsz 大于p_filesz,“剩余”的字节要清零。p_filesz 不能大于 p_memsz。可加载的段在程序头部表格中根据 p_vaddr 成员按升序排列。
PT_DYNAMIC 2 数组元素给出动态链接信息。
PT_INTERP 3 数组元素给出一个 NULL 结尾的字符串的位置和长度,该字符串将被当作解释器调用。这种段类型仅对与可执行文件有意义(尽管也可能在共享目标文件上发生)。在一个文件中不能出现一次以上。如果存在这种类型的段,它必须在所有可加载段项目的前面。
PT_NOTE 4 此数组元素给出附加信息的位置和大小。
PT_SHLIB 5 此段类型被保留,不过语义未指定。包含这种类型的段的程序与 ABI不符。
PT_PHDR 6 此类型的数组元素如果存在,则给出了程序头部表自身的大小和位置,既包括在文件中也包括在内存中的信息。此类型的段在文件中不能出现一次以上。并且只有程序头部表是程序的内存映像的一部分时才起作用。如果存在此类型段,则必须在所有可加载段项目的前面。
PT_LOPROC~ PT_HIPROC 0x70000000~ 0x7fffffff 此范围的类型保留给处理器专用语义。

以上就是良许教程网为各位朋友分享的Linu系统相关内容。想要了解更多Linux相关知识记得关注公众号“良许Linux”,或扫描下方二维码进行关注,更多干货等着你 !

137e00002230ad9f26e78-265x300
本文由 良许Linux教程网 发布,可自由转载、引用,但需署名作者且注明文章出处。如转载至微信公众号,请在文末添加作者公众号二维码。
良许

作者: 良许

良许,世界500强企业Linux开发工程师,公众号【良许Linux】的作者,全网拥有超30W粉丝。个人标签:创业者,CSDN学院讲师,副业达人,流量玩家,摄影爱好者。
上一篇
下一篇

发表评论

联系我们

联系我们

公众号:良许Linux

在线咨询: QQ交谈

邮箱: yychuyu@163.com

关注微信
微信扫一扫关注我们

微信扫一扫关注我们

关注微博
返回顶部