良许Linux教程网 干货合集 CPU和内存之间关系的演变

CPU和内存之间关系的演变

我们今天看到的CPU和内存之间的关系,其实是经过了多年的演变才形成的。

8086

原来咱们的祖先叫8086,我们看下他的照片

image-20231210173450361
image-20231210173450361

那是一个纯真质朴的年代,虽然工作性能不高,不过那个年代的程序都很简单,我们的祖先一问世就成为了明星,称得上那个时代的顶流了。

看到照片中的那些金属针脚了吗?那是我们CPU和外界打交道的触角,每一根都有不同的作用。

image-20231210173506828
image-20231210173506828

通过这些触角,CPU就可以跟内存打交道,获取指令和数据,辛勤的干活啦。

那个年代,条件比较差,能凑合的就凑合,能共用的就共用。这不,你看祖先CPU的地址总线针脚和数据总线针脚就共用了。

祖先是一个16位的CPU,数据(Data)总线就有16位,一次性可以传输16个比特位。和地址(Address)总线凑合着一起共用,于是就取名AD0-AD15。

不过祖先的地址总线却不止16个,还多出了A16-A19整整4个呢!这样有20个地址线,可以寻址1MB的内存了!

但是祖先的寄存器都是16位的啊,只能存放16位的地址。不过他们很聪明,发明了一个叫分段式存储管理的方法,把内存划分为最大64KB的小块,为什么是64KB呢,因为16位地址最多只能寻址这么大了。然后又加了几个叫做段寄存器的东西,指向这些块的开头,这样,通过段地址+段内偏移地址的方式,就能访问更多的内存了。

image-20231210173515592
image-20231210173515592

32位时代

后来啊,祖先的那点计算能力越来越捉襟见肘,实在是跟不上时代了。家族中的年轻一代开始挑大梁,80286和80386CPU相继问世,尤其是80386,成为了划时代的存在。

image-20231210173518895
image-20231210173518895

到了80386时代,我们与外界通信的引脚就更多了,并且变成了32位的CPU,那个时候,生活条件就变好了,地址线和数据线再也不用共享引脚了。

image-20231210173522540
image-20231210173522540

后来,人类变得越来越贪心,想要一边听音乐,一边还要上网,同时还要编辑文档,这就同时需要运行多个程序。

这个时候,有人发现了商机,开发了一个叫操作系统的东西,原来那些程序不再直接和我们CPU打交道了,而是和操作系统打交道,操作系统再和我们打交道,中间商赚差价说的就是他们!

操作系统这玩意儿很聪明啊,通过时间片划分让我们CPU来轮流执行多个程序,一会儿让我们执行音乐播放,一会儿让我们执行浏览器程序,一会儿又让我们执行文档编辑程序。我们是无所谓啊,给什么代码不是代码啊,我们不挑,埋头苦干就是了。人类的反应速度跟我们就差得远了,他们还以为这些程序真的是同时执行的呢。

虚拟内存

不过随之而来出现了一个大问题,这么多程序都要运行,大家挤在一个内存里,经常发生摩擦,冲突不断。

image-20231210173526132
image-20231210173526132

先祖们为了此事殚精竭虑,终于想出了一个好办法,一直沿用至今。

他们提出了一个虚拟地址的东西,所有程序使用的地址都是一个虚拟的地址,在真正和内存打交道的时候,咱们CPU内部工作人员再给翻译成真实的内存地址,关于这事儿,内存那家伙一直被我们蒙在鼓里。

image-20231210173528931
image-20231210173528931

这样一来,每个程序都可以用的是0x00000000到0xffffffff总共4GB这么大范围的地址空间,当然不会真的给他们那么多空间,内存那家伙总共才4GB呢,而是要按需申请分配。分配的单元是按照来进行的,32位的CPU一个页是4KB。这些分配管理的累活就让操作系统来干了,中间商不能光拿好处不干正事,至于我们CPU,做好地址翻译的工作就好了。

image-20231210173531766
image-20231210173531766

为此,在我们寄存器内部专门添置了一个新的寄存器CR3,用来指向一个地址翻译查询字典,字典划分了两级目录。我们把一个32位的地址划分了3部分,前面两部分分别指向两级目录中的条目,用来定位这个地址在物理内存的哪个页面,最后一部分就是指向物理内存页面的偏移,这样就完成了地址的翻译工作。

每个进程有不同的地址空间,切换进程的时候,把CR3的内容换一下就使用新进程的翻译字典,特别的方便。

我们把这种内存管理方式叫做分页式内存管理

真佩服先祖们的智慧,这样巧妙的把各个程序隔离开来,后来我们把这种工作模式叫做保护模式,把之前那种直接使用真实内存地址的工作模式叫做实地址模式

分页交换

人类变得越来越贪婪,程序变得越来越多,对内存的需求也越来越大。随着这些程序都不断申请内存页面,内存空间很快就要耗尽了。

我们看在眼里,急在心里,后来找操作系统协商,看看这问题该怎么办。

image-20231210173535167
image-20231210173535167

操作系统那家伙也不赖,想出了一个好办法。内存的大小有限,但是硬盘给力啊,硬盘空间大的多,去硬盘上划一块区域来,把内存里长时间没有用到的页面给换到这块区域里去,然后做个标记。如果后面谁要访问那个页面,咱们CPU就检查如果有这个标记,就发送一个页错误的中断信号告诉操作系统去把这个页面换回来。

通过我们之间的配合,解决了内存紧张的危机。后来我们把这个技术叫做内存分页交换

现在

时间过得很快,到了我们这一辈,内存变得更大了,16GB都是小case,32GB也很常见。

除了内存,我们CPU本身也更先进了,别的不说,你光看看咱们现在的引脚数那比先祖们那几辈就不可同日而语。

image-20231210173537989
image-20231210173537989

我们不仅从32位变成了64位,还从单核变成了多核,像我所在的CPU就有8个车间,8核并行执行,比起先祖那个年代简直有云泥之别。

以上就是良许教程网为各位朋友分享的Linu系统相关内容。想要了解更多Linux相关知识记得关注公众号“良许Linux”,或扫描下方二维码进行关注,更多干货等着你 !

137e00002230ad9f26e78-265x300
本文由 良许Linux教程网 发布,可自由转载、引用,但需署名作者且注明文章出处。如转载至微信公众号,请在文末添加作者公众号二维码。
良许

作者: 良许

良许,世界500强企业Linux开发工程师,公众号【良许Linux】的作者,全网拥有超30W粉丝。个人标签:创业者,CSDN学院讲师,副业达人,流量玩家,摄影爱好者。
上一篇
下一篇

发表评论

联系我们

联系我们

公众号:良许Linux

在线咨询: QQ交谈

邮箱: yychuyu@163.com

关注微信
微信扫一扫关注我们

微信扫一扫关注我们

关注微博
返回顶部