良许Linux教程网 干货合集 从实际案例入手,总结PCB布局8大要点

从实际案例入手,总结PCB布局8大要点

在电路设计的过程中,有时应用工程师会忽略PCB布局的重要性。经常会遇到这样的情况:电路的原理图是正确的,但却不能正常工作,或者只能实现低性能运行。你是否也曾碰到过类似情况呢?

在本文中,TI的应用工程师Timothy Claycomb将为您详细介绍如何正确地布置运算放大器电路板,以确保其功能、性能和稳健性。我最近与一名实习生合作,使用增益为2V/V、负载为10kΩ、电源电压为+/-15V的非反相配置OPA191运算放大器进行设计。如下图所示为我们设计的原理图。

image-20240221222947689
image-20240221222947689

图1:采用非反相配置的OPA191原理图

我指派实习生为该设计布设电路板,同时为他做了PCB布设方面的一般指导(即尽可能缩短电路板的走线路径,同时将组件保持紧密排布,以减小电路板空间),然后让他自行设计。设计过程到底有多难?其实就是几个电阻器和电容器罢了,不是吗?

图2所示为他首次尝试设计的布局。红线为电路板顶层的路径,而蓝线为底层的路径。

image-20240221222952376
image-20240221222952376

图2:首次布局尝试方案

当时,我意识到电路板布局并不像我想象的那样直观;我应该为他做一些更详细的指导。他在设计时完全遵从了我们的建议,缩短了走线路径,并将各部件紧密地排布在一起。但这种布局还可以进一步改善,从而减小电路板寄生阻抗并优化其性能。

我们所做的首项改进是将电阻R1和R2移至OPA191的倒相引脚(引脚2)旁;这样有助于减小倒相引脚的杂散电容。运算放大器的倒相引脚是一个高阻抗节点,因此灵敏度较高。较长的走线路径可以作为电线,让高频噪音耦合进信号链。倒相引脚上的PCB电容会引发稳定性问题。因此,倒相引脚上的接点应该越小越好。

将R1和R2移至引脚2旁,可以让负荷电阻器R3旋转180度,从而使去耦电容器C1更贴近OPA191的正电源引脚(引脚7)。让去耦电容器尽可能贴近电源引脚,这一点极其重要。如果去耦电容器与电源引脚之间的走线路径较长,会增大电源引脚的电感,从而降低性能。

我们所做的另一项改进在于第二个去耦电容器C2。不应将VCC与C2的导孔连接放在电容器和电源引脚之间,而应布设在供电电压必须通过电容器进入器件电源引脚的位置。

图3显示了移动每个部件和导孔从而改善布局的方法。

image-20240221222955821
image-20240221222955821

图3:改进布局的各部件位置

将各部件移至新位置后,仍可以做一些其他改进。您可以加宽走线路径,以减小电感,即相当于走线路径所连接的焊盘尺寸。还可以灌流电路板顶层和底层的接地层,从而为返回电流创造一个坚实的低阻抗路径。

图4所示为我们的最终布局。

image-20240221222959864
image-20240221222959864

图4:最终布局

下一次当您布设印刷电路板时,务必遵循以下布设惯例:

  • 尽量缩短倒相引脚的连接。
  • 让去耦电容器尽量靠近电源引脚。
  • 如果使用了多个去耦电容器,将最小的去耦电容器放在离电源引脚最近的位置。
  • 不要将导孔置于去耦电容和电源引脚之间。
  • 尽可能扩宽走线路径。
  • 不要让走线路径上出现90度的角。
  • 灌流至少一个坚实的接地层。
  • 不要为了用丝印层来标示部件而舍弃良好的布局。

以上就是良许教程网为各位朋友分享的Linu系统相关内容。想要了解更多Linux相关知识记得关注公众号“良许Linux”,或扫描下方二维码进行关注,更多干货等着你 !

137e00002230ad9f26e78-265x300
本文由 良许Linux教程网 发布,可自由转载、引用,但需署名作者且注明文章出处。如转载至微信公众号,请在文末添加作者公众号二维码。
良许

作者: 良许

良许,世界500强企业Linux开发工程师,公众号【良许Linux】的作者,全网拥有超30W粉丝。个人标签:创业者,CSDN学院讲师,副业达人,流量玩家,摄影爱好者。
上一篇
下一篇

发表评论

联系我们

联系我们

公众号:良许Linux

在线咨询: QQ交谈

邮箱: yychuyu@163.com

关注微信
微信扫一扫关注我们

微信扫一扫关注我们

关注微博
返回顶部