良许Linux教程网 干货合集 LDO基础3-理解热性能

LDO基础3-理解热性能

在考虑应用性能时,纳入热性能因素可以进一步提升其表现。低压降稳压器 (LDO) 的运作原理在于将多余的功率转化为热量,以维持稳定的输出电压,因此,对于功耗较低或输入输出电压差较小的场景,这种集成电路尤为合适。因此,在选择适当的封装时,以确保最大限度地提高应用性能至关重要,这也是设计师们面临的挑战之一,因为最小的封装可能无法满足特定应用的要求。

在选择合适的 LDO 时,热阻 (RθJA) 是一个至关重要的考虑因素。RθJA 表示 LDO 在特定封装下的散热效率,数值越大,代表散热效果越差,而数值越小则表示器件的散热效率越高。通常情况下,封装尺寸越小,对应的 RθJA 值也越大。以 TPS732 为例,不同封装下的热阻值存在差异:小型的 SOT-23 (2.9mm x 1.6mm) 封装的热阻为 205.9°C/W,而 SOT-223 (6.5mm x 3.5mm) 封装的热阻则为 53.1°C/W。这意味着,当 TPS732 消耗 1W 功率时,其温度将分别上升 205.9°C 或 53.1°C。这些数值可以在器件的数据表中的“热性能信息”部分找到,具体可参考表 1。

热性能信息

image-20240314222349589
image-20240314222349589

表 1:不同封装对应的热阻。

是否选择了适合的封装?

建议的 LDO 工作结温介于 -40°C 至 125°C 之间;同样,可以在器件数据表中查看这些值,如表 2 所示。

image-20240314222438544
image-20240314222438544

表 2:建议的工作结温。

这些建议的温度表示器件将按数据表中“电气特性”表所述工作。可以使用公式 1 确定哪种封装将在适当的温度下工作。

image-20240314222442443
image-20240314222442443

其中 TJ 为结温,TA 为环境温度,RθJA 为热阻(取自数据表),PD 为功耗,Iground 为接地电流(取自数据表)。

下面给出了一个简单示例,使用 TPS732 将 5.5V 电压下调至3V,输出电流为 250mA,采用 SOT-23 和 SOT-223 两种封装。

  • PD=[(5.5V-3V) x 250mA] + (5.5V x 0.95mA) = 0.63W
  • SOT – 23: TJ = 25°C + (205.9°C/W x 0.63W) = 154.72°C
  • SOT – 223: TJ = 25°C + (53.1°C/W x 0.63W) = 58.45°C

热关断

结温为 154.72°C 的器件不仅超过了建议的温度规范,还非常接近热关断温度。关断温度通常为 160°C;这意味着器件结温高于 160°C 时会激活器件内部的热保护电路。此热保护电路会禁用输出电路,使器件温度下降,防止器件因过热而受到损坏。

当器件的结温降至 140°C 左右时,会禁用热保护电路并重新启用输出电路。如果不降低环境温度和/或功耗,器件可能会在热保护电路的作用下反复接通和断开。如果不降低环境温度和/或功耗,则必须更改设计才能获得适当的性能。

一种比较明确的设计解决方案是采用更大尺寸的封装,因为器件需要在建议的温度下工作。

下文介绍了有助于最大程度地减少热量的一些提示和技巧。

增大接地层、VIN 和 VOUT 接触层的尺寸

当功率耗散时,热量通过散热焊盘从 LDO 散出;因此,增大印刷电路板 (PCB) 中输入层、输出层和接地层的尺寸将会降低热阻。如图 1 所示,接地层通常尽可能大,覆盖 PCB 上未被其他电路迹线占用的大部分区域。该尺寸设计原则是由于许多元件都会生成返回电流,并且需要确保这些元件具有相同的基准电压。最后,接触层有助于避免可能会损害系统的压降。大的接触层还有助于提高散热能力并最大限度地降低迹线电阻。增大铜迹线尺寸和扩大散热界面可显著提高传导冷却效率。

在设计多层 PCB 时,采用单独的电路板层(包含覆盖整个电路板的接地层)通常是个不错的做法。这有助于将任何元件接地而不需要额外迹线。元件引脚通过电路板上的孔直接连接到包含接地平面的电路板层。

image-20240314222452603
image-20240314222452603

安装散热器

散热器会降低 RθJA,但会增大系统尺寸、增加系统成本。选择散热器时,底板的尺寸应与其所连接的器件的尺寸相似。这有助于在散热器表面均匀散热。如果散热器尺寸与其所连接器件表面的尺寸不尽相同,热阻会增大。

考虑到封装的物理尺寸,SC-70 (2mm × 1.25mm) 和 SOT-23(2.9mm × 1.6mm) 等封装通常不与散热器搭配使用。另一方面,可以将晶体管外形 (TO)-220 (10.16mm × 8.7mm) 和TO-263 (10.16mm × 9.85mm) 封装与散热器搭配使用。图 2 显示了四种封装之间的差异。

image-20240314222457376
image-20240314222457376

可以在输入电压侧串联电阻,以便分担一些功耗;图 3 所示为相关示例。该技术的目标是使用电阻将输入电压降至可能的最低水平。

image-20240314222500452
image-20240314222500452

由于 LDO 需要处于饱和状态以进行适当调节,可以通过将所需的输出电压和压降相加来获得最低输入电压。公式 2 表示了LDO 的这两种属性的计算方式:

image-20240314222503521
image-20240314222503521

使用 TPS732 示例中的条件(输出 250mA 电流,将 5.5V 调节至 3V),可以使用公式 3 计算电阻的最大值以及该电阻消耗的最大功率:

image-20240314222506152
image-20240314222506152

选择适合的电阻,确保不会超过其“额定功耗”。此额定值表示在不损坏自身的情况下电阻可以将多少瓦功率转化为热量。因此,如果 VIN = 5.5V、VOUT = 3V、VDROPOUT = 0.15V(取自数据表)、IOUT = 250mA 且 IGROUND = 0.95mA(取自数据表),则:

image-20240314222508807
image-20240314222508807

布局

如果 PCB 上的其他发热器件与 LDO 的距离非常近,这些器件可能会影响 LDO 的温度。为避免温度上升,请确保将 LDO 放在尽可能远离发热器件的位置。

对于特定应用,可以通过许多方法实现高效、尺寸适当且成本低的散热解决方案。关键在于早期设计阶段为确保所有选件都可用而需要考虑的各种注意事项。对于散热而言,选择适合的元件并不是一项简单的任务,但选用适合的器件和技术将有助于设计过程成功完成。

以上就是良许教程网为各位朋友分享的Linu系统相关内容。想要了解更多Linux相关知识记得关注公众号“良许Linux”,或扫描下方二维码进行关注,更多干货等着你 !

137e00002230ad9f26e78-265x300
本文由 良许Linux教程网 发布,可自由转载、引用,但需署名作者且注明文章出处。如转载至微信公众号,请在文末添加作者公众号二维码。
良许

作者: 良许

良许,世界500强企业Linux开发工程师,公众号【良许Linux】的作者,全网拥有超30W粉丝。个人标签:创业者,CSDN学院讲师,副业达人,流量玩家,摄影爱好者。
上一篇
下一篇

发表评论

联系我们

联系我们

公众号:良许Linux

在线咨询: QQ交谈

邮箱: yychuyu@163.com

关注微信
微信扫一扫关注我们

微信扫一扫关注我们

关注微博
返回顶部