良许Linux教程网 干货合集 详解跳跃搜索算法

详解跳跃搜索算法

俄式乘法,又被称为俄国农夫法,它是对两个正整数相乘的非主流算法,下面为大家讲解一下俄式乘法算法思想。

详解跳跃搜索算法

假设n和m是两个正整数,计算n*m,现在用n的输入作为实例规模的度量标准。

假设n是偶数,一个规模为原来一半的实例必须要对n/2进行处理,n*m=n/2 * 2m

假设n是奇数,只需要对公式进行简单调整,n*m=(n-1)/2 * 2m

并且使用1*m=m作为终止条件。

我们写下来一个例子就会发现:所有当前n的值是奇数时候,只需要相加对应的m值即可得到n*m的乘积。

例如:5065=25130=12260 (+130)=6520=31040=12080===2080+1040+130=3250

下面我们就开始下代码实现: #includeusing namespace std;

int main(){int n,m,mul=0;cin>>n>>m;for(int i=n>>1;i>=1;i=i>>1){m=mif(i%2==1) { mul=m+mul; } } cout

以上就是良许教程网为各位朋友分享的Linu系统相关内容。想要了解更多Linux相关知识记得关注公众号“良许Linux”,或扫描下方二维码进行关注,更多干货等着你 !

img
本文由 良许Linux教程网 发布,可自由转载、引用,但需署名作者且注明文章出处。如转载至微信公众号,请在文末添加作者公众号二维码。
良许

作者: 良许

良许,世界500强企业Linux开发工程师,公众号【良许Linux】的作者,全网拥有超30W粉丝。个人标签:创业者,CSDN学院讲师,副业达人,流量玩家,摄影爱好者。
上一篇
下一篇

发表评论

联系我们

联系我们

公众号:良许Linux

在线咨询: QQ交谈

邮箱: yychuyu@163.com

关注微信
微信扫一扫关注我们

微信扫一扫关注我们

关注微博
返回顶部