良许Linux教程网 干货合集 分享一下数仓模型设计方案

分享一下数仓模型设计方案

数据仓库的核心是展现层和提供优质的服务。ETL 及其规范、分层等所做的一切都是为了一个更清晰易用的展现层。

一、维度建模基本概念

维度模型是数据仓库领域大师Ralph Kimall所倡导,他的《数据仓库工具箱》,是数据仓库工程领域最流行的数仓建模经典。维度建模以分析决策的需求出发构建模型,构建的数据模型为分析需求服务,因此它重点解决用户如何更快速完成分析需求,同时还有较好的大规模复杂查询的响应性能。

维度建模是专门应用于分析型数据库、数据仓库、数据集市建模的方法。数据集市可以理解为是一种小型数据仓库。

1.1 事实表

发生在现实世界中的操作型事件,其所产生的可度量数值,存储在事实表中。从最低的粒度级别来看,事实表行对应一个度量事件,反之亦然。

事实表表示对分析主题的度量。比如一次购买行为我们就可以理解为是一个事实。

数仓模型设计详解数仓模型设计详解

图中的订单表就是一个事实表,可以理解他就是在现实中发生的一次操作型事件,每完成一个订单,就会在订单中增加一条记录。

事实表的特征:表里没有存放实际的内容,他是一堆主键的集合,这些ID分别能对应到维度表中的一条记录。事实表包含了与各维度表相关联的外键,可与维度表关联。事实表的度量通常是数值类型(条/个/次),且记录数会不断增加,表数据规模迅速增长。

1.2 维度表

维度表示要对数据进行分析时所用的一个量,比如你要分析产品销售情况, 你可以选择按类别进行分析,或按区域分析。这样的按..分析就构成一个维度。上图中的用户表、商家表、时间表这些都属于维度表。这些表都有一个唯一的主键,然后在表中存放了详细的数据信息。

例如:交易金额分析分析

男性用户的订单金额、联想商品的订单金额、第一季度的订单金额、手机的订单金额、家里下单的订单金额

例如:学生分析

姓张的同学有多少、男性的同学有多少、江苏的同学有多少、身高小于170cm的同学有多少、年龄小于23岁的同学有多少。

每个维度表都包含单一的主键列。维度表的主键可以作为与之关联的任何事实表的外键,当然,维度表行的描述环境应与事实表行完全对应。维度表通常比较宽,是扁平型非规范表,包含大量的低粒度的文本属性。

总的说来,在数据仓库中不需要严格遵守规范化设计原则。因为数据仓库的主导功能就是面向分析,以查询为主,不涉及数据更新操作。

事实表的设计是以能够正确记录历史信息为准则。

维度表的设计是以能够以合适的角度来聚合主题内容为准则。

二、维度建模三种模式

2.1 星型模型

星形模式(Star Schema)是最常用的维度建模方式。星型模式是以事实表为中心,所有的维度表直接连接在事实表上,像星星一样。

星形模式的维度建模由一个事实表和一组维表成,且具有以下特点:

维表只和事实表关联,维表之间没有关联;

每个维表主键为单列,且该主键放置在事实表中,作为两边连接的外键;

以事实表为核心,维度表围绕核心呈星形分布

数仓模型设计详解数仓模型设计详解

2.2 雪花模式

雪花模式(Snowflake Schema)是对星形模式的扩展。雪花模式的维度表可以拥有其他维度表的,虽然这种模型相比星型更规范一些,但是由于这种模型不太容易理解,维护成本比较高,而且性能方面需要关联多层维表,性能也比星型模型要低。所以一般不是很常用。

数仓模型设计详解数仓模型设计详解

2.3 星座模式

星座模式是星型模式延伸而来,星型模式是基于一张事实表的,而星座模式是基于多张事实表的,而且共享维度信息。

前面介绍的两种维度建模方法都是多维表对应单事实表,但在很多时候维度空间内的事实表不止一个,而一个维表也可能被多个事实表用到。在业务发展后期,绝大部分维度建模都采用的是星座模式。

以上就是良许教程网为各位朋友分享的Linu系统相关内容。想要了解更多Linux相关知识记得关注公众号“良许Linux”,或扫描下方二维码进行关注,更多干货等着你 !

1ad5ad6eddc451da964a8888a6fd5266d0163210
本文由 良许Linux教程网 发布,可自由转载、引用,但需署名作者且注明文章出处。如转载至微信公众号,请在文末添加作者公众号二维码。
良许

作者: 良许

良许,世界500强企业Linux开发工程师,公众号【良许Linux】的作者,全网拥有超30W粉丝。个人标签:创业者,CSDN学院讲师,副业达人,流量玩家,摄影爱好者。
上一篇
下一篇

发表评论

联系我们

联系我们

公众号:良许Linux

在线咨询: QQ交谈

邮箱: yychuyu@163.com

关注微信
微信扫一扫关注我们

微信扫一扫关注我们

关注微博
返回顶部